Point Leo Foreshore and Public Parks Reserves Committee of Management Inc

The Index

Insights

Google Lighthouse Performance

The Google Lighthouse performance score is a metric that measures the speed and performance of a website. It’s an overall score that ranges from 0 to 100 and is generated based on a number of different performance metrics, such as the time it takes for a website to load, the time it takes for a website to become interactive, the size of the resources used by the website, and other factors that impact the user experience.

A high performance score in Google Lighthouse indicates that a website is fast and responsive, which can lead to a better user experience and improved search engine rankings. On the other hand, a low performance score can indicate that a website is slow and unresponsive, and can negatively impact the user experience.

Mobile Performance
72%
Desktop Performance
90%

Core Web Vitals

Core Web Vitals are a set of specific factors that Google considers important in a webpage’s overall user experience. Core Web Vitals are made up of three specific page speed and user interaction measurements: Largest Contentful PaintFirst Input Delay, and Cumulative Layout Shift.

Pass or fail?

MobileFail
DesktopPass

CWV Breakdown

VitalMobileDesktopTarget
Largest Contentful Paint3.8 s1.0 s< 2.5 s
First Input Delay200 ms20 ms< 100ms
Cumulative Layout Shift00 0.1

Tracking scripts

All the tracking scripts on the site generated ~5 KB of data

A tracking script is a code snippet designed to track the flow of visitors who visit a website. Media, advertising, and analytics organisations will provide a script to add to your website that sends data directly to their servers. This data can then be used to measure goals and conversions, analyse user behaviour, and influence advertising campaigns.

Consider how much of this data you actually need and use? How often do you review the analytics data, and does this inform genuine change? Are you actively running social media campaigns? Consider pausing or removing tracking scripts that aren’t being actively used.

View details
stats.wp.com 1 4 KB
pixel.wp.com 1 218 B

Opportunities

Replace jQuery and jQuery libraries with more modern code45 KB0.01g

jQuery is a popular and widely-used JavaScript library that simplifies web development by providing a set of tools and functions to interact with HTML documents, handle events, create animations, and make asynchronous HTTP requests.

In the past, jQuery was a very popular choice for web development because it simplified many common tasks and provided a consistent and cross-browser-compatible API. However, with the advancement of modern web technologies and improvements in browser capabilities, the need for jQuery has decreased.

Many modern web frameworks and libraries, such as React and Angular, provide their own set of tools for handling common tasks and interacting with the DOM, making jQuery less necessary in many cases. The Javascript engine in modern browsers have also become more consistent in the feature implementations often eliminating the need for a library like jQuery.

jQuery represents an opportunity because:

  1. Performance: While jQuery is a powerful and useful library, it can slow down website performance due to its large size and complex code. Modern browsers have also improved their native support for many of the features that jQuery provides, reducing the need for it.
  2. Maintainability: jQuery code can be difficult to maintain and update, particularly as web technologies evolve and change. This can make it harder for developers to keep up with best practices and standards for web development.
  3. Accessibility: Some jQuery plugins and features can create accessibility issues, particularly for users who rely on assistive technologies. This can make it harder for people with disabilities to use and access websites.
First Contentful Paint

First Contentful Paint (FCP) is a performance metric that measures the time it takes for the first piece of content to be rendered on the screen when a user navigates to a web page. This content can be any visual element on the page, such as text, images, or a background color.

FCP is important because it directly affects the perceived speed of a website, and can impact user engagement and conversion rates. A faster FCP can lead to a better user experience and improved performance.

Here are a few ways you can optimise your FCP:

  1. Optimise images: Large, unoptimised images can slow down a page’s FCP. You can optimise images by compressing them, reducing their dimensions, and choosing the right format for each image.
  2. Minimise HTTP requests: Each resource requested by a web page, such as images, scripts, and stylesheets, requires a separate HTTP request. Minimising the number of HTTP requests can help to reduce the time it takes for a page to render.
  3. Prioritize critical content: Prioritizing critical content, such as above-the-fold content, can help to ensure that users see something on the screen quickly, even if the rest of the page is still loading.
  4. Reduce server response time: A slow server response time can significantly impact FCP. Optimizing server-side code and server settings can help to reduce response times and improve FCP.
  5. Use a performance monitoring tool: There are many tools available that can help you monitor your website’s performance, including FCP. These tools can help you identify performance issues and track your progress as you implement optimizations.
MobileDesktop
Score48%93%
Timing3.0 s0.9 s
Largest Contentful Paint

Largest Contentful Paint marks the time at which the largest text or image is painted. Learn more about the Largest Contentful Paint metric

MobileDesktop
Score54%94%
Timing3.8 s1.0 s
Total Blocking Time

Sum of all time periods between FCP and Time to Interactive, when task length exceeded 50ms, expressed in milliseconds. Learn more about the Total Blocking Time metric.

MobileDesktop
Score95%100%
Timing150 ms0 ms
Speed Index

Speed Index shows how quickly the contents of a page are visibly populated. Learn more about the Speed Index metric.

MobileDesktop
Score4%18%
Timing11.7 s3.4 s
Time to Interactive

Time to Interactive is the amount of time it takes for the page to become fully interactive. Learn more about the Time to Interactive metric.

MobileDesktop
Score92%100%
Timing3.5 s0.9 s
Max Potential First Input Delay

The maximum potential First Input Delay that your users could experience is the duration of the longest task. Learn more about the Maximum Potential First Input Delay metric.

MobileDesktop
Score67%100%
Timing200 ms20 ms
First Meaningful Paint

First Meaningful Paint measures when the primary content of a page is visible. Learn more about the First Meaningful Paint metric.

MobileDesktop
Score74%93%
Timing3.0 s0.9 s
Eliminate render-blocking resources

Resources are blocking the first paint of your page. Consider delivering critical JS/CSS inline and deferring all non-critical JS/styles. Learn how to eliminate render-blocking resources.

MobileDesktop
Score36%77%
InsightPotential savings of 1,530 msPotential savings of 310 ms
Properly size images

Serve images that are appropriately-sized to save cellular data and improve load time. Learn how to size images.

MobileDesktop
Score90%100%
InsightPotential savings of 31 KiB
Reduce unused CSS

Reduce unused rules from stylesheets and defer CSS not used for above-the-fold content to decrease bytes consumed by network activity. Learn how to reduce unused CSS.

MobileDesktop
Score90%100%
InsightPotential savings of 24 KiBPotential savings of 24 KiB
Serve images in next-gen formats

Image formats like WebP and AVIF often provide better compression than PNG or JPEG, which means faster downloads and less data consumption. Learn more about modern image formats.

MobileDesktop
Score90%100%
InsightPotential savings of 21 KiBPotential savings of 21 KiB
Initial server response time was short

Keep the server response time for the main document short because all other requests depend on it. Learn more about the Time to First Byte metric.

MobileDesktop
GradeFailPass
InsightRoot document took 3,600 msRoot document took 0 ms
Serve static assets with an efficient cache policy

A long cache lifetime can speed up repeat visits to your page. Learn more about efficient cache policies.

MobileDesktop
Score88%88%
Insight70 resources found70 resources found
Minimizes main-thread work

Consider reducing the time spent parsing, compiling and executing JS. You may find delivering smaller JS payloads helps with this. Learn how to minimize main-thread work

MobileDesktop
Score96%100%
Timing1.6 s0.2 s