Insights

Google Lighthouse Performance

The Google Lighthouse performance score is a metric that measures the speed and performance of a website. It’s an overall score that ranges from 0 to 100 and is generated based on a number of different performance metrics, such as the time it takes for a website to load, the time it takes for a website to become interactive, the size of the resources used by the website, and other factors that impact the user experience.

A high performance score in Google Lighthouse indicates that a website is fast and responsive, which can lead to a better user experience and improved search engine rankings. On the other hand, a low performance score can indicate that a website is slow and unresponsive, and can negatively impact the user experience.

Mobile Performance
0%
Desktop Performance
0%

Core Web Vitals

Core Web Vitals are a set of specific factors that Google considers important in a webpage’s overall user experience. Core Web Vitals are made up of three specific page speed and user interaction measurements: Largest Contentful PaintFirst Input Delay, and Cumulative Layout Shift.

Pass or fail?

MobileFail
DesktopFail

CWV Breakdown

VitalMobileDesktopTarget
Largest Contentful Paint< 2.5 s
First Input Delay1,450 ms410 ms< 100ms
Cumulative Layout Shift00 0.1

Tracking scripts

All the tracking scripts on the site generated ~333 KB of data

A tracking script is a code snippet designed to track the flow of visitors who visit a website. Media, advertising, and analytics organisations will provide a script to add to your website that sends data directly to their servers. This data can then be used to measure goals and conversions, analyse user behaviour, and influence advertising campaigns.

Consider how much of this data you actually need and use? How often do you review the analytics data, and does this inform genuine change? Are you actively running social media campaigns? Consider pausing or removing tracking scripts that aren’t being actively used.

View details
connect.facebook.net 3 129 KB
googletagmanager.com 2 197 KB
googleads.g.doubleclick.net 2 4 KB
pubads.g.doubleclick.net 1 918 B
google-analytics.com 1 0 B
google.com 2 1 KB
facebook.com 3 984 B
vc.hotjar.io 1 339 B

Opportunities

Replace icon font files139 KB0.04g

Font icons can have a negative impact on performance and emissions because they can increase the size of the page and the amount of data that needs to be downloaded. Some specific reasons why font icons can be bad for performance and emissions include:

  1. Increased file size: Font icons are typically included as part of a web font, which can be a large file that needs to be downloaded. This can increase the overall size of the page, leading to slower load times and higher emissions.
  2. Inefficient rendering: Web fonts are sometimes loaded and rendered inefficiently, which can result in slow performance and higher emissions.
  3. Unused icons: Font icons often include a large number of icons that may not be used on a particular page, increasing the file size and leading to inefficient use of resources.

While icon fonts are still widely used on the web, and they can be a useful tool for adding icons to a website. it is a dated practice when there are better options such as SVG icons, which can be more efficient and have a lower impact on performance and emissions.

View details
pro-fa-regular-400-5.0.0.woff2 23 KB
pro-fa-regular-400-5.0.9.woff2 8 KB
pro-fa-regular-400-5.2.0.woff2 11 KB
pro-fa-regular-400-5.11.1.woff2 10 KB
pro-fa-brands-400-5.0.0.woff2 37 KB
pro-fa-regular-400-5.10.2.woff2 16 KB
pro-fa-regular-400-5.0.3.woff2 2 KB
pro-fa-regular-400-5.12.0.woff2 6 KB
pro-fa-regular-400-5.0.11.woff2 4 KB
pro-fa-regular-400-5.7.0.woff2 11 KB
pro-fa-regular-400-5.3.0.woff2 11 KB
Subset large font files25 KB0.007g

Fonts should be subsetted to reduce the file size, improve performance, and reduce emissions. Subsetting a font involves removing any characters that are not needed for a particular use case, resulting in a smaller file size and faster page load times. Some specific reasons why fonts should be subsetted include:

  1. Reduced file size: Subsetting a font removes any unused characters, which can result in a smaller file size. This can help to reduce the amount of data that needs to be downloaded, leading to faster page load times and lower emissions.
  2. Improved performance: Fonts that are subsetted are faster to load and render than fonts that are not subsetted. This can help to improve the overall performance of a website, leading to a better user experience.

Overall, subsetting fonts is a good practice for anyone looking to optimize the performance and reduce the emissions of a website of a website.

View details
gilroy-semibolditalic-webfont-75a537648662fec717db8a48cc69295b.woff2 ~23 KB ~5 KB
gilroy-regularitalic-webfont-1ed72ea6edbbfccff13e894d74e1461f.woff2 ~23 KB ~5 KB
gilroy-bold-webfont-bf242e62b9ca19f61eb94c268bc92c2b.woff2 ~22 KB ~4 KB
gilroy-medium-webfont-303d3bf0e75b2f7db4876b27def9c51b.woff2 ~22 KB ~4 KB
gilroy-semibold-webfont-ed5cc4ef2173b2bf44462c53bb2cb69f.woff2 ~21 KB ~4 KB
gilroy-regular-webfont-9536c6a15d9cdce084bc551928e53d58.woff2 ~21 KB ~3 KB
Remove third party font files

Font files should be loaded from the same hosting as the website because

  1. Increased loading time: Third-party sub-resources, such as scripts, fonts, or images, need to be downloaded from a separate server before they can be displayed on the website. This can increase the overall loading time of the page, leading to a slower user experience.
  2. Dependence on external servers: The loading of third-party subresources is dependent on the availability and performance of the external servers that host them. If these servers are slow or unavailable, it can result in slow page loading times or even errors.
  3. Increased risk of security threats: Third-party subresources can introduce security risks to a website, as they can contain malicious code or be used to track user activity.
View details
ka-p.fontawesome.com pro-fa-regular-400-5.0.0.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.0.9.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.2.0.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.11.1.woff2
ka-p.fontawesome.com pro-fa-brands-400-5.0.0.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.10.2.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.0.3.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.12.0.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.0.11.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.7.0.woff2
ka-p.fontawesome.com pro-fa-regular-400-5.3.0.woff2
First Contentful Paint

First Contentful Paint (FCP) is a performance metric that measures the time it takes for the first piece of content to be rendered on the screen when a user navigates to a web page. This content can be any visual element on the page, such as text, images, or a background color.

FCP is important because it directly affects the perceived speed of a website, and can impact user engagement and conversion rates. A faster FCP can lead to a better user experience and improved performance.

Here are a few ways you can optimise your FCP:

  1. Optimise images: Large, unoptimised images can slow down a page’s FCP. You can optimise images by compressing them, reducing their dimensions, and choosing the right format for each image.
  2. Minimise HTTP requests: Each resource requested by a web page, such as images, scripts, and stylesheets, requires a separate HTTP request. Minimising the number of HTTP requests can help to reduce the time it takes for a page to render.
  3. Prioritize critical content: Prioritizing critical content, such as above-the-fold content, can help to ensure that users see something on the screen quickly, even if the rest of the page is still loading.
  4. Reduce server response time: A slow server response time can significantly impact FCP. Optimizing server-side code and server settings can help to reduce response times and improve FCP.
  5. Use a performance monitoring tool: There are many tools available that can help you monitor your website’s performance, including FCP. These tools can help you identify performance issues and track your progress as you implement optimizations.
MobileDesktop
Score20%89%
Timing4.1 s1.0 s
Total Blocking Time

Sum of all time periods between FCP and Time to Interactive, when task length exceeded 50ms, expressed in milliseconds. Learn more about the Total Blocking Time metric.

MobileDesktop
Score0%6%
Timing5,810 ms960 ms
Speed Index

Speed Index shows how quickly the contents of a page are visibly populated. Learn more about the Speed Index metric.

MobileDesktop
Score5%23%
Timing11.2 s3.2 s
Time to Interactive

Time to Interactive is the amount of time it takes for the page to become fully interactive. Learn more about the Time to Interactive metric.

MobileDesktop
Score2%39%
Timing20.3 s5.1 s
Max Potential First Input Delay

The maximum potential First Input Delay that your users could experience is the duration of the longest task. Learn more about the Maximum Potential First Input Delay metric.

MobileDesktop
Score0%16%
Timing1,450 ms410 ms
First Meaningful Paint

First Meaningful Paint measures when the primary content of a page is visible. Learn more about the First Meaningful Paint metric.

MobileDesktop
Score39%81%
Timing4.5 s1.1 s
Eliminate render-blocking resources

Resources are blocking the first paint of your page. Consider delivering critical JS/CSS inline and deferring all non-critical JS/styles. Learn how to eliminate render-blocking resources.

MobileDesktop
Score78%85%
InsightPotential savings of 300 msPotential savings of 200 ms
Avoid enormous network payloads

Large network payloads cost users real money and are highly correlated with long load times. Learn how to reduce payload sizes.

MobileDesktop
Score92%80%
InsightTotal size was 2,557 KiBTotal size was 3,043 KiB
Serve static assets with an efficient cache policy

A long cache lifetime can speed up repeat visits to your page. Learn more about efficient cache policies.

MobileDesktop
Score4%3%
Insight37 resources found37 resources found
Avoid an excessive DOM size

A large DOM will increase memory usage, cause longer style calculations, and produce costly layout reflows. Learn how to avoid an excessive DOM size.

MobileDesktop
Score17%17%
Insight2,086 elements2,086 elements
Reduce JavaScript execution time

Consider reducing the time spent parsing, compiling, and executing JS. You may find delivering smaller JS payloads helps with this. Learn how to reduce Javascript execution time.

MobileDesktop
Score4%52%
Timing13.5 s3.3 s
Minimize main-thread work

Consider reducing the time spent parsing, compiling and executing JS. You may find delivering smaller JS payloads helps with this. Learn how to minimize main-thread work

MobileDesktop
Score0%29%
Timing20.9 s5.3 s
Reduce the impact of third-party code

Third-party code can significantly impact load performance. Limit the number of redundant third-party providers and try to load third-party code after your page has primarily finished loading. Learn how to minimize third-party impact.

MobileDesktop
GradeFailFail
InsightThird-party code blocked the main thread for 4,250 msThird-party code blocked the main thread for 660 ms
Does not use passive listeners to improve scrolling performance

Consider marking your touch and wheel event listeners as passive to improve your page's scroll performance. Learn more about adopting passive event listeners.

MobileDesktop
GradeFailFail