Insights

Google Lighthouse Performance

The Google Lighthouse performance score is a metric that measures the speed and performance of a website. It’s an overall score that ranges from 0 to 100 and is generated based on a number of different performance metrics, such as the time it takes for a website to load, the time it takes for a website to become interactive, the size of the resources used by the website, and other factors that impact the user experience.

A high performance score in Google Lighthouse indicates that a website is fast and responsive, which can lead to a better user experience and improved search engine rankings. On the other hand, a low performance score can indicate that a website is slow and unresponsive, and can negatively impact the user experience.

Mobile Performance
2%
Desktop Performance
40%

Core Web Vitals

Core Web Vitals are a set of specific factors that Google considers important in a webpage’s overall user experience. Core Web Vitals are made up of three specific page speed and user interaction measurements: Largest Contentful PaintFirst Input Delay, and Cumulative Layout Shift.

Pass or fail?

MobileFail
DesktopFail

CWV Breakdown

VitalMobileDesktopTarget
Largest Contentful Paint18.0 s7.0 s< 2.5 s
First Input Delay470 ms100 ms< 100ms
Cumulative Layout Shift0.9120.246 0.1

Tracking scripts

All the tracking scripts on the site generated ~162 KB of data

A tracking script is a code snippet designed to track the flow of visitors who visit a website. Media, advertising, and analytics organisations will provide a script to add to your website that sends data directly to their servers. This data can then be used to measure goals and conversions, analyse user behaviour, and influence advertising campaigns.

Consider how much of this data you actually need and use? How often do you review the analytics data, and does this inform genuine change? Are you actively running social media campaigns? Consider pausing or removing tracking scripts that aren’t being actively used.

View details
googletagmanager.com 2 162 KB
analytics.google.com 1 0 B
stats.g.doubleclick.net 1 0 B
content.hotjar.io 1 205 B

Opportunities

Optimise images2 MB0.355g

By optimising the following images, roughly 2 MB could be removed from the transfer size, about 41%. This would reduce the CO2 generated per page load from 0.87g grams to 0.51 grams.

Images should be optimised for the web for several reasons:

  1. Reduced file size: Optimizing images can result in a smaller file size, which can help to reduce the amount of data that needs to be downloaded. This can lead to faster page load times and improved performance.
  2. Improved user experience: Optimising images can help to improve the overall user experience, as pages with optimised images load faster and are more responsive.
  3. Lower emissions: Optimising images can help to reduce the emissions associated with data transfer, as less data needs to be transmitted over the network.
  4. Better accessibility: Optimising images can make them more accessible to users with slower connections or limited data plans.
View details
Green_bond_2.jpg 372 KB 10% 324 KB
ZWW_banner_V3.jpg 272 KB 7% 241 KB
ZWW_news_banner_V3.jpg 194 KB 5% 166 KB
BRL338_V1_Cover_SR.jpg 174 KB 4% 152 KB
V1_FY23_News_Banner.jpg 167 KB 4% 118 KB
Our-Latest-Results-_Widget_.png 150 KB 4% 116 KB
729_V1_Corporate_Governance_Statement.jpg 120 KB 3% 102 KB
729_V1_Download_the_2023_AR_Widget.jpg 113 KB 3% 96 KB
The_Global_FoodBanking_Network_3.jpg 104 KB 3% 84 KB
Joaquin-Gil.jpg 96 KB 2% 67 KB
BRL353_V1_2_Net-Zero-News_Slider.jpg 93 KB 2% 45 KB
Third-Large.jpg 73 KB 2% 49 KB
asset_1.jpeg 33 KB 1% 28 KB
Replace icon font files76 KB0.02g

Font icons can have a negative impact on performance and emissions because they can increase the size of the page and the amount of data that needs to be downloaded. Some specific reasons why font icons can be bad for performance and emissions include:

  1. Increased file size: Font icons are typically included as part of a web font, which can be a large file that needs to be downloaded. This can increase the overall size of the page, leading to slower load times and higher emissions.
  2. Inefficient rendering: Web fonts are sometimes loaded and rendered inefficiently, which can result in slow performance and higher emissions.
  3. Unused icons: Font icons often include a large number of icons that may not be used on a particular page, increasing the file size and leading to inefficient use of resources.

While icon fonts are still widely used on the web, and they can be a useful tool for adding icons to a website. it is a dated practice when there are better options such as SVG icons, which can be more efficient and have a lower impact on performance and emissions.

View details
fontawesome-webfont.woff2 76 KB
Remove third party font files

Font files should be loaded from the same hosting as the website because

  1. Increased loading time: Third-party sub-resources, such as scripts, fonts, or images, need to be downloaded from a separate server before they can be displayed on the website. This can increase the overall loading time of the page, leading to a slower user experience.
  2. Dependence on external servers: The loading of third-party subresources is dependent on the availability and performance of the external servers that host them. If these servers are slow or unavailable, it can result in slow page loading times or even errors.
  3. Increased risk of security threats: Third-party subresources can introduce security risks to a website, as they can contain malicious code or be used to track user activity.
View details
fonts.gstatic.com KFOmCnqEu92Fr1Mu4mxKKTU1Kg.woff2
fonts.gstatic.com KFOlCnqEu92Fr1MmWUlfBBc4AMP6lQ.woff2
fonts.gstatic.com KFOlCnqEu92Fr1MmSU5fBBc4AMP6lQ.woff2
fonts.gstatic.com KFOlCnqEu92Fr1MmEU9fBBc4AMP6lQ.woff2
fonts.gstatic.com KFOmCnqEu92Fr1Mu4mxKKTU1Kg.woff2
fonts.gstatic.com KFOmCnqEu92Fr1Mu4mxKKTU1Kg.woff2
First Contentful Paint

First Contentful Paint (FCP) is a performance metric that measures the time it takes for the first piece of content to be rendered on the screen when a user navigates to a web page. This content can be any visual element on the page, such as text, images, or a background color.

FCP is important because it directly affects the perceived speed of a website, and can impact user engagement and conversion rates. A faster FCP can lead to a better user experience and improved performance.

Here are a few ways you can optimise your FCP:

  1. Optimise images: Large, unoptimised images can slow down a page’s FCP. You can optimise images by compressing them, reducing their dimensions, and choosing the right format for each image.
  2. Minimise HTTP requests: Each resource requested by a web page, such as images, scripts, and stylesheets, requires a separate HTTP request. Minimising the number of HTTP requests can help to reduce the time it takes for a page to render.
  3. Prioritize critical content: Prioritizing critical content, such as above-the-fold content, can help to ensure that users see something on the screen quickly, even if the rest of the page is still loading.
  4. Reduce server response time: A slow server response time can significantly impact FCP. Optimizing server-side code and server settings can help to reduce response times and improve FCP.
  5. Use a performance monitoring tool: There are many tools available that can help you monitor your website’s performance, including FCP. These tools can help you identify performance issues and track your progress as you implement optimizations.
MobileDesktop
Score1%1%
Timing6.9 s4.2 s
Largest Contentful Paint

Largest Contentful Paint marks the time at which the largest text or image is painted. Learn more about the Largest Contentful Paint metric

MobileDesktop
Score0%2%
Timing18.0 s7.0 s
Total Blocking Time

Sum of all time periods between FCP and Time to Interactive, when task length exceeded 50ms, expressed in milliseconds. Learn more about the Total Blocking Time metric.

MobileDesktop
Score5%90%
Timing2,420 ms150 ms
Cumulative Layout Shift

Cumulative Layout Shift measures the movement of visible elements within the viewport. Learn more about the Cumulative Layout Shift metric.

MobileDesktop
Score3%50%
Timing0.9120.246
Speed Index

Speed Index shows how quickly the contents of a page are visibly populated. Learn more about the Speed Index metric.

MobileDesktop
Score0%1%
Timing17.4 s6.0 s
Time to Interactive

Time to Interactive is the amount of time it takes for the page to become fully interactive. Learn more about the Time to Interactive metric.

MobileDesktop
Score2%23%
Timing19.4 s6.3 s
Max Potential First Input Delay

The maximum potential First Input Delay that your users could experience is the duration of the longest task. Learn more about the Maximum Potential First Input Delay metric.

MobileDesktop
Score10%96%
Timing470 ms100 ms
First Meaningful Paint

First Meaningful Paint measures when the primary content of a page is visible. Learn more about the First Meaningful Paint metric.

MobileDesktop
Score9%0%
Timing7.0 s5.0 s
Eliminate render-blocking resources

Resources are blocking the first paint of your page. Consider delivering critical JS/CSS inline and deferring all non-critical JS/styles. Learn how to eliminate render-blocking resources.

MobileDesktop
Score46%52%
InsightPotential savings of 1,070 msPotential savings of 860 ms
Properly size images

Serve images that are appropriately-sized to save cellular data and improve load time. Learn how to size images.

MobileDesktop
Score32%100%
InsightPotential savings of 344 KiBPotential savings of 586 KiB
Defer offscreen images

Consider lazy-loading offscreen and hidden images after all critical resources have finished loading to lower time to interactive. Learn how to defer offscreen images.

MobileDesktop
Score23%100%
InsightPotential savings of 288 KiBPotential savings of 16 KiB
Reduce unused CSS

Reduce unused rules from stylesheets and defer CSS not used for above-the-fold content to decrease bytes consumed by network activity. Learn how to reduce unused CSS.

MobileDesktop
Score70%100%
InsightPotential savings of 159 KiBPotential savings of 161 KiB
Reduce unused JavaScript

Reduce unused JavaScript and defer loading scripts until they are required to decrease bytes consumed by network activity. Learn how to reduce unused JavaScript.

MobileDesktop
Score13%100%
InsightPotential savings of 986 KiBPotential savings of 986 KiB
Efficiently encode images

Optimized images load faster and consume less cellular data. Learn how to efficiently encode images.

MobileDesktop
Score9%76%
InsightPotential savings of 1,005 KiBPotential savings of 1,005 KiB
Serve images in next-gen formats

Image formats like WebP and AVIF often provide better compression than PNG or JPEG, which means faster downloads and less data consumption. Learn more about modern image formats.

MobileDesktop
Score4%47%
InsightPotential savings of 1,589 KiBPotential savings of 1,589 KiB
Reduce initial server response time

Keep the server response time for the main document short because all other requests depend on it. Learn more about the Time to First Byte metric.

MobileDesktop
GradeFailFail
InsightRoot document took 1,550 msRoot document took 1,550 ms
Avoid enormous network payloads

Large network payloads cost users real money and are highly correlated with long load times. Learn how to reduce payload sizes.

MobileDesktop
Score51%53%
InsightTotal size was 3,967 KiBTotal size was 3,891 KiB
Serve static assets with an efficient cache policy

A long cache lifetime can speed up repeat visits to your page. Learn more about efficient cache policies.

MobileDesktop
Score22%22%
Insight26 resources found25 resources found
Avoid an excessive DOM size

A large DOM will increase memory usage, cause longer style calculations, and produce costly layout reflows. Learn how to avoid an excessive DOM size.

MobileDesktop
Score53%53%
Insight1,356 elements1,356 elements
JavaScript execution time

Consider reducing the time spent parsing, compiling, and executing JS. You may find delivering smaller JS payloads helps with this. Learn how to reduce Javascript execution time.

MobileDesktop
Score22%90%
Timing6.4 s1.3 s
Minimize main-thread work

Consider reducing the time spent parsing, compiling and executing JS. You may find delivering smaller JS payloads helps with this. Learn how to minimize main-thread work

MobileDesktop
Score2%86%
Timing11.6 s2.2 s
Ensure text remains visible during webfont load

Leverage the font-display CSS feature to ensure text is user-visible while webfonts are loading. Learn more about font-display.

MobileDesktop
GradeFailFail
Minimize third-party usage

Third-party code can significantly impact load performance. Limit the number of redundant third-party providers and try to load third-party code after your page has primarily finished loading. Learn how to minimize third-party impact.

MobileDesktop
GradeFailPass
InsightThird-party code blocked the main thread for 2,230 msThird-party code blocked the main thread for 130 ms
Does not use passive listeners to improve scrolling performance

Consider marking your touch and wheel event listeners as passive to improve your page's scroll performance. Learn more about adopting passive event listeners.

MobileDesktop
GradeFailFail
Avoid document.write()

For users on slow connections, external scripts dynamically injected via document.write() can delay page load by tens of seconds. Learn how to avoid document.write().

MobileDesktop
GradeFailFail
Image elements do not have explicit width and height

Set an explicit width and height on image elements to reduce layout shifts and improve CLS. Learn how to set image dimensions

MobileDesktop
GradeFailFail